

The GNSS PRO technique and in-orbit demonstration aboard PAZ

E. Cardellach^{1,2}, R. Padullés^{1,2} With contributions by: Paz^{1,2}, F.J. Turk³, C. O. Ao³, K-.N. Wang³, M. de la Torre Juárez³ ¹Institut de Ciències de l'Espai (ICE-CSIC) ²Institut d'Estudis Espacials de Catalunya (IEEC) ³let Propulsion Laboratory, California Institute of Technology (JPL)

Financiado por la Unión Europea NextGenerationEl

EXCELENCIA MARÍA

Contents

- The Polarimetric Radio Occultation technique
- In-orbit demonstration aboard PAZ (ROHP-PAZ): status of the mission and data
- Hypothesis and confirmation: sensitivity to heavy rain
- Complementing the hypothesis: sensitivity to frozen particles
- Recent activities:
 - Studies towards the use of GNSS PRO for and in NWP
 - New opportunities with commercial GNSS PRO: clusters of profiles, larger data sets for NWP?

Space Sciences **Traditional Radio Occultations (RO)**

- GPS emitted electromagnetic waves cross the atmosphere before reaching a Low ٠ Earth Orbiter occulting behind the horizon
- **Observables:** Amplitude and phase (ϕ) of the received EM wave \rightarrow Doppler ٠ measurements \rightarrow bending angle
- The rays bend due to changes in the refractive index of the atmosphere. Such ٠ **bending angle** can be derived, and **refractivity vertical profiles** are retrieved \rightarrow (T, p, q).

Data assimilation of RO

PEXCELENCIA MARÍA DE MAEZTU

RO- Bending angle profiles • into NWP prediction models for

Institute of

- Concept introduced in 2009
- RO rays are collected using a 2-linearly polarized antenna (H,V)
- If these rays happen to cross precipitation, a **positive differential phase** shift $\Delta \Phi = \Phi_H \Phi_V$ is expected owing to the asymmetric shape of precipitating

- This is a new measurement concept.
- It combines radio occultation links of the GNSS with the polarimetric properties of the forward scattering off big rain droplets (and other hydrometeors).
- The hypothesis is that this polarimetric information is sensitive to heavy precipitation.
- If successful, it would represent the only sensor that can infer both

VERTICAL PROFILES OF ATMOSPHERIC THERMODYNAMICS (T, p, q) + VERTICAL PROFILES OF HYDROMETEORS

To understand this concept it is important to keep in mind that the big falling rain drops are not spherical, but flattened:

The bigger the drop, the larger the asymmetry effect.

Heavier rain has more large drops.

PEXCELENCIA MARÍA DE MAEZTU

Institute o

MARÍA DE MAEZTU **IEEC**

• Simulations based on realistic rain systems showed that $\Delta \Phi$ must be tiny!

Questions

- Is it technologically possible to measure the polarimetric RO?
- Are the GNSS PRO signatures sufficiently large to be measured?
- Do they relate to [heavy] precipitation?
- Can the 'traditional' (thermodynamics) profiles be recovered from GNSS PRO data?
- How can these measurements be used in meteorology and climate studies?

Contents

- The Polarimetric Radio Occultation technique
- In-orbit demonstration aboard PAZ (ROHP-PAZ): status of the mission and data
- Hypothesis and confirmation: sensitivity to heavy rain
- Complementing the hypothesis: sensitivity to frozen particles
- Recent activities:
 - Studies towards the use of GNSS PRO for and in NWP
 - New opportunities with commercial GNSS PRO: clusters of profiles, larger data sets for NWP?

GNSS PRO aboard PAZ

- A proof-of-concept experiment aboard the Spanish PAZ satellite: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ)
- Modified IGOR receiver
- Agreements with NOAA and UCAR for dissemination in NRT of 'traditional' RO profiles
- Close collaboration with NASA/JPL for scientific investigations

PEXCELENCIA MARÍA DE MAEZTU

GNSS PRO aboard PAZ

- A proof-of-concept experiment aboard the Spanish PAZ satellite: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ)
- Modified IGOR receiver
- Agreements with NOAA and UCAR for dissemination in NRT of 'traditional' RO profiles
- Close collaboration with NASA/JPL for scientific investigations
- PAZ launched in 02/2018
- ROHP-PAZ activated in 05/2018
- Continuous data acquisitions since then...

Visit https://paz.ice.csic.es

Space Sciences

• Where to download data...

	ICE-CSIC, IEEC: https://paz.ice.csic.es/	UCAR, CDAAC https://data.cosmic.ucar.edu/ gnss-ro/paz/postProc/	JPL https:// genesis.jpl.nasa.gov/data/ ftp/
'Traditional' RO	(from UCAR processing)	L1a, L1b and L2 (bending/impact, T,p,q) for RHCP-equivalent signals	L2 (N, T, p, q) from H-pol signals
PRO profiles	Calibrated polarimetric phase shift as function of tangent point height		Calibrated polarimetric phase shift as function tangent point height
	 Co-locations with: GPM radiometers and radars IMERG surface rain rate Brightness temperature Tropical Cyclones 		SNR_h, SNR_v

Where to download data...

Tropical Cyclones

Institute of

• A SESSION LATER TODAY!

Data processing status [chair: John Braun and Jan-Peter Weiss]				
9:00- 9:20	18:00- 18:20	01:00 ⁺¹ - 01:20 ⁺¹	R. Padullés (ICE-CSIC, IEEC)	ICE-CSIC/IEEC GNSS PRO processing and new data set
9:20-	18:20-	01:20 ⁺¹ -	KN. Wang	JPL data processing status
9:40	18:40	01:40 ⁺¹	(JPL)	
9:40-	18:40-	01:40 ⁺¹ -	Doug	Recovery of thermodynamic RO products from PRO data
10:00	19:00	02:00 ⁺¹	Hunt(UCAR)	

Contents

- The Polarimetric Radio Occultation technique
- In-orbit demonstration aboard PAZ (ROHP-PAZ): status of the mission and data
- Hypothesis and confirmation: sensitivity to heavy rain
- Complementing the hypothesis: sensitivity to frozen particles
- Recent activities:
 - Studies towards the use of GNSS PRO for and in NWP
 - New opportunities with commercial GNSS PRO: clusters of profiles, larger data sets for NWP?

Hypothesis

Hypothesis: the H-polarized component of the GNSS signals suffers a larger delay than the V-polarized one, due to the presence of non-spherical, flattened big rain droplets associated to intense precipitation along the ray-path.

Confirmation of the hypothesis

Hypothesis: the H-polarized component of the GNSS signals suffers a larger delay than the V-polarized one, due to the presence of non-spherical, flattened big rain droplets associated to intense precipitation along the ray-path.

Few months after activating the experiment, the hypothesis was confirmed **DOI**: 10.1029/2018GL080412, **DOI**: 10.5194/amt-13-1299-2020

MARÍA DE MAEZTU

cth < 6 km

Institute of

20.0

Confirmation of the hypothesis

Hypothesis: the H-polarized component of the GNSS signals suffers a larger delay than the V-polarized one, due to the presence of non-spherical, flattened big rain droplets associated to intense precipitation along the ray-path.

Relationship between relative humidity and the strength of the polarimetric shift at different altitudes **DOI**: 10.1175/JTECH-D-21-0044.1

RECELENCIA MARÍA DE MAEZTU

Institute of

Confirmation of the hypothesis

Hypothesis: the H-polarized component of the GNSS signals suffers a larger delay than the V-polarized one, due to the presence of non-spherical, flattened big rain droplets associated to intense precipitation along the ray-path.

Relationship between relative humidity and the strength of the polarimetric shift at different altitudes **DOI**: 10.1175/JTECH-D-21-0044.1

T MARÍA DE MAEZTU

Institute of

Contents

- The Polarimetric Radio Occultation technique
- In-orbit demonstration aboard PAZ (ROHP-PAZ): status of the mission and data
- Hypothesis and confirmation: sensitivity to heavy rain
- Complementing the hypothesis: sensitivity to frozen particles
- Recent activities:
 - Studies towards the use of GNSS PRO for and in NWP
 - New opportunities with commercial GNSS PRO: clusters of profiles, larger data sets for NWP?

Sensitivity to oriented frozen hydrometeors

Co-locations between PAZ and GPM radar+radiometers (DOI: 10.1109/TGRS.2021.3065119)

RECELENCIA MARÍA DE MAEZTU Space Sciences Sensitivity to oriented frozen hydrometeors

Co-locations between PAZ and GPM radar+radiometers (DOI: 10.1109/TGRS.2021.3065119)

Institute of

Sensitivity to frozen hydrometeors

Institute of

Space Sciences

Sensitivity to frozen hydrometeors

Co-locations between PAZ PRO profiles and NEXRAD dual-pol weather radars:

Contents

- The Polarimetric Radio Occultation technique
- In-orbit demonstration aboard PAZ (ROHP-PAZ): status of the mission and data
- Hypothesis and confirmation: sensitivity to heavy rain
- Complementing the hypothesis: sensitivity to frozen particles
- Recent activities:
 - Studies towards the use of GNSS PRO for and in NWP
 - New opportunities with commercial GNSS PRO: clusters of profiles, larger data sets for NWP?

Use for/in NWP

FOR NWP:

As a **diagnosis** tool, to help identifying and refining **model parametrizations**

IN NWP:

Data Assimilation

Efforts in GNSS PRO for NWP [chair: Lidia Cucurull]				
10:00- 10:10	19:00- 19:10	02:00 ⁺¹ - 02:10 ⁺¹	E. Cardellach / R.Padullés (ICE-CSIC, IEEC)	Introduction to the Multi-center exercise for PAZ NWP simulations and comparisons
10:10- 10:30	19:10- 19:30	02:10 ⁺¹ - 02:30	BREAK	
10:30- 10:50	19:30- 19:50	02:30 ⁺¹ - 02:50 ⁺¹	M. Murphy (GMAO, NASA)	WRF Simulations of Atmospheric Rivers
10:50- 11:00	19:50- 20:00	02:50 ⁺¹ - 03:00 ⁺¹	SY. Chen (NCU)/B.Kuo (UCAR)	WRF Simulations of Tropical Cyclones
11:00- 11:20	20:00- 20:20	03:00 ⁺¹ - 03:20 ⁺¹	R. Padullés (ICE-CSIC, IEEC)	Results of the multi-center exercise
11:20- 11:40	20:20- 20:40	03:20 ⁺¹ - 03:40 ⁺¹	D. Hotta (JMA)/K. Lonitz (ECMWF)	GNSS PRO Forward Operator
11:40- 12:00	20:40- 21:00	03:40 ⁺¹ - 04:00 ⁺¹	B. Johnson (UCAR/JCSDA)	Recent Advances in the CRTM and hydrometeor modeling of relevance to PRO

Commercial GNSS PRO

New opportunities with commercial GNSS PRO:

Institute of

Space Sciences

- clusters of profiles
- larger data sets for NWP

Novelties with respect to PAZ: multiple GNSS constellations, CubeSats, no need of antenna calibration

RECEIENCIA MARÍA DE MAEZTU

Commercial GNSS PRO

. .

				1
8:10- 8:30	17:10- 17:30	24:10- 24:30	T. Burger (ESA)	ESA activities in support of GNSS PRO

DAY 2: Nov 29, 2023				
Time LA	Time EU	Time Beijing	Presenter:	Topic/Title:
Commercial GNSS PRO [chair: Ramon Padullés]				
7:00-	16:00-	23:00-	V. Nguyen (Spire	Initial polarimetric RO results from Spire's nanosatellite constellation
7:20	16:20	23:20	Global)	
7:20-	16:20-	23:20-	R. Kursinski (PlanetIQ)	Dual linear polarization GNSS RO
7:40	16:40	23:40		measurements at PlanetiQ in 2024
7:40-	16:40-	23:40-	D. Masters (Muon	Muon Space satellites and payloads
8:00	17:00	24:00	Space)	

Conclusions

- Polarimetric RO experiment aboard PAZ
- GNSS PRO Hypothesis: flattened droplets delay the H-component of the circularly polarized GNSS signals with respect to the V-component, delay that can be measured at different altitudes (but really tiny, ~hundredth to tenth of cycle)
- Hypothesis confirmed: sensitivity to non-spherical hydrometeors at different altitudes
- Large sensitivity to frozen particles proven by comparing with GPM GMI radiometers, CloudSat climatologies and NEXRAD dualpolarization measurements
- Recent work for NWP and related to commercial GNSS PRO \rightarrow see dedicated sessions!

