Institute of **Space Sciences**

Results of the multi-center exercise

R. Padullés^{1,2}, E. Cardellach^{1,2} F. Joe Turk³, K.-N. Wang³, C.O. Ao^{3,} M. de la Torre-Juárez³ Shu-Ya Chen⁴, B. Kuo⁵, M. Murphy⁶, J. Haase⁷, K. Lonitz⁸, D. Hotta^{8,9}, S. Healy⁸

¹Institut de Ciències de l'Espai (ICE-CSIC), ²Institut d'Estudis Espacials de Catalunya (IEEC) ³Jet Propulsion Laboratory, California Institute of Technology ⁴National Central University, Taiwan, ⁵UCAR ⁶GMAO/NASA, ⁷Scripps Institution of Oceanography, UC San Diego

⁸ECMWF ⁹ Japanese Meteorological Agency

Financiado por la Unión Europea NextGenerationEl

CSIC

Institute of EXCELENCIA Space Sciences

- Forward operator
 - Interpolation
 - WC \rightarrow Kdp $\rightarrow \Delta \varphi$
- Results for operational model outputs
 - ECMWF IFS
 - JMA
- Results for WRF runs
 - Atmospheric rivers
 - Tropical Cyclones

- Forward operator
 - Interpolation
 - WC \rightarrow Kdp $\rightarrow \Delta \varphi$
- Results for operational model outputs
 - ECMWF IFS
 - JMA
- Results for WRF runs
 - Atmospheric rivers
 - Tropical Cyclones

Forward operator

Case example: Tropical Cyclone Matmo (2019-10-30 9:35)

Case example: Tropical Cyclone Matmo (2019-10-30 9:35) $\Delta \Phi = \int K_{ m dp} dL$

simplification:

effective density

water content

Rayleigh regime

 $K_{\rm dp} = \frac{1}{2} C \,\rho \, \rm IWC \, (1 - ar);$

axis ratio

Forward operator

$\Delta \Phi = \int K_{\rm dp} dL$ $K_{\rm dp} = \frac{1}{2} C \rho \, \rm IWC \, (1 - ar);$

simplification:

Initial assumptions: ρ =0.2 ; *ar*=0.5

effective density

water content

Rayleigh regime

Case example: Tropical Cyclone Matmo (2019-10-30 9:35)

axis ratio

Forward operator

Forward operator

Case example: Tropical Cyclone Matmo (2019-10-30 9:35)

Multicenter exercise

ECMWF	Operational IFS	Rain WCSnow WC	Large scale and convective	$\left \right\rangle$	To see what is in the operational models.
JMA	Operational	Cloud WC	From large scaleFrom convective	Į	Limited changes
Scripps UCSD	WRF	 Rain WC Snow WC Cloud WC Ice WC Graupel WC 	 Initialized using two models: ECMWF and GFS 		
UCAR, NCU	WRF	 Rain WC Snow WC Cloud WC Ice WC Graupel WC 	 Initialized using two models: ERA5 and GDASfnl 7 different microphysics schemes for each case 	}	More freedom to change parameters: • model initialization • microphysics
ECMWF	ERA5 reanalysis	 Rain WC Snow WC Cloud WC Ice WC 	Only large scale part is stored		Comparison purposes

- Forward operator
 - Interpolation
 - WC \rightarrow Kdp $\rightarrow \Delta \varphi$
- Results for operational model outputs
 - ECMWF IFS
 - JMA
- Results for WRF runs
 - Atmospheric rivers
 - Tropical Cyclones

Results for ECMWF IFS

Institute of space sciences

R. Padullés 2nd PAZ Polarimetric RO workshop

Results for JMA

- In JMA model, the large hydrometeors are instantaneously converted into surface rain when they exceed a certain threshold (*from Daisuke*)
- Therefore, CuWC and LsWC only account for small particles
- To use Polarimetric RO effectively, we need that the model stores all hydrometeors fields

- Forward operator
 - Interpolation
 - WC \rightarrow Kdp $\rightarrow \Delta \varphi$
- Results for operational model outputs
 - ECMWF IFS
 - JMA
- Results for WRF runs
 - Atmospheric rivers
 - Tropical Cyclones

Results for Scripps UCSD WRF runs

Results for Scripps UCSD WRF runs

Institute of space sciences

R. Padullés 2nd PAZ Polarimetric RO workshop

Institute of (Space Sciences

Institute of space sciences

R. Padullés 2nd PAZ Polarimetric RO workshop

What happens when we displace the rays +- 0.2 deg in lat and lon ?

- If the model output is failing in representing the exact location of the convective cells, the result can change a lot
- Moving the rays we can check the sensitivity of PRO to these "errors" in location
- For this case, it seems that after moving the rays, one model input and one microphysics could agree with observations (GDASfnl + MP7)

Institute of

Space Sciences

Institute of space sciences

EXCELENCIA

DE MAEZTU

MARÍA

Detail of displacement results using GDASfnl and MP7:

Conclusions and next steps

- Model outputs:
 - Important which fields are stored/output/provided
- WRF runs
 - Sensitivity to initial model
 - Sensitivity to microphysics
- Forward operator
 - Sensitivity to horizontal displacement
 - Sensitivity to density and axis ratio parameters choice
- More realistic forward simulations? → important for inter-comparison with other observations
- Understand the importance of microphysics choice:
 - Why does it change from one to another?
 - Does this impact forecast?

Financiado por la Unión Europea

Thanks!

padulles@ice.csic.es