Multi-Radar Multi-Sensor (MRMS)
for weather and precipitation
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Multi-Radar Multi-Sensor (MRMS)
for weather and precipitation

1. Radar is a cornerstone for understanding global water fluxes
2. Multi-Radar Multi-Sensor and space missions

3. Emerging radar technology for QPE



Some considerations in radar hydrometeorology
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Some considerations in radar hydrometeorology
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space/time representativeness

Fine depiction of the spatial distribution of precipitation
Covers a large range of precipitation scales in 3D
Bridges across scales and sensors



A cornerstone for understanding global water fluxes
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courtesy WMO




A cornerstone for understanding global water fluxes

Calibrate/Validate satellite Support/supplement with
precipitation constellation . suborbital observations
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spaceborne radar passive sensors
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A cornerstone for understanding global water fluxes
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Multi-Radar/Multi-Sensor (MRMS)

Domain: 20-55° N, 130-60° W
Resolution: 0.01° , 2 min update cycle

Data Sources:
~180 radars every 4-5min
~18000 gauges every hour
RAP model hourly 3D analyses

~225,000 data pairs
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Multi-Radar Multi-Sensor and space missions

IFOV precipitation features

* intermittency

* type

* rate variability

Assessing spaceborne precipitation
estimates over diverse conditions, e.g.,
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Exploring precipitation process signatures in
spaceborne radar observations

Refine the Dual-frequency Precipitation Radar (DPR) microphysical relevance
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e distribution of WSR-88D GRs
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(b)
VN framework:
(b) DPR beam intercepting GR beams

(c) schematics of a waffle of GR bins
See also Oral 4B.1

Morris and Schwaller (2011)




Exploring new process signhatures in DPR observations

Specific enhancement signatures of warm processes in DPR profiles
Z..(Ka)

Z_(Ku) DFRm

mm \\/arm enhancement
(identified from dual-pol.
ground-radar)

Relative height (km)

Other processes
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Porcacchia et al. (2019)



Emerging radar technology

Resolution / representativeness:
timescale: ~ 5-10 min
spatial resolution: ~ 1 km
range: ~ 150 km

Filling the space and time gaps
with
Phased-Array radar technology




Mechanically steered radars generate time-separated discontinuous
samples of vertical changes to hydrometeors in the atmosphere

"« Poor Temporal Resolution
® Poor Vertical Sampling (1 Beam)
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Pseudo-continuous vertical profiles of polarimetric radar variables can
be interpreted in terms of microphysics, processes, and fluxes.



Precipitation processes and fluxes observed by PAR

Courtesy A. Matland (poster #21)
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R. D. Palmer et al., "Horus—A Fully Digital
Polarimetric Phased Array Radar for Next-
Generation Weather Observations," in /EEE
Transactions on Radar Systems, vol. 1, pp. 96-117,
2023, doi: 10.1109/TRS.2023.3280033.



Precipitation processes and fluxes observed by PAR
Courtesy A. Matland (poster #21)

PAR spatially and temporally continuous observations of the atmosphere allow for
the utilization of time and height derivatives (uniquely derived from PAR)
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Precipitation processes and fluxes observed by PAR
Courtesy A. Matland (poster #21)

Microphysics Fluxes Processes
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Summary

1. Weather radar provides a unique 3D perspective on atmospheric
precipitation.

The Multi-Radar Multi-Sensor system mosaics radar network observations
and covers a broad range of scales.

Increasing role of radar bridging across sub-orbital and orbital precipitation
science and applications — cornerstone for global water fluxes. The
complementarity of ground-based and spaceborne instruments is key.

4. Phased-Array radar technology opens the door for new approaches by
providing much needed space and time continuity to capture precipitation
processes and fluxes. Other technologies such as multi-static radars have a
role to play.
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