Institute of Space Sciences

Co-location and validation of PAZ observations with polarimetric weather radars

A. Paz^{1,2}, R. Padullés^{1,2}, E. Cardellach^{1,2}

¹Institut de Ciències de l'Espai (ICE-CSIC), Barcelona ²Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona

Polarimetric-RO

Institute of space sciences

Antía Paz Carracedo 2nd PAZ workshop

-75.0

-84.6

-94.2

Longitude (°)

3

• NEXRAD radars have dual-polarization capabilities, providing variables that can be compared to the differential phase shift obtained with PAZ.

- NEXRAD radars offer high spatial resolution and broad coverage over the US territory.
- performance of the PRO technique.
 NEXRAD radars offer high spatial resolution and broad coverage over a spatial resolution and broad coverage over a spatial resolution and broad cover a spatial resolution a spatial resolution

can serve as ground truth data for assessing the accuracy and

NEXRAD radars provide reliable ground-based measurements, which

Co-located observations

Antía Paz Carracedo 2nd PAZ workshop

60

50

40

20

10

0

-10

Reflectivity (dBZ)

NEXRAD Level II dataset
 Time difference < 8 minutes
 Minimum distance between radar and PRO < 250 km
 Total of ~3200 observations

2D projection of PRO rays

Kdp calculation

- Radar data treatment with **Py-Art**
- Calculation of Kdp based on the method developed by Vulpiani (<u>Vulpiani et al. 2012</u>, <u>Vulpiani et al. 2015</u>)
 - Four step process to estimate *K*_{DP}
 - K_{DP} is estimated through computing the finite difference over the raw Ψ_{DP} field over a moving window of user-defined size
 - Validity of the K_{DP} values are compared to a set of defined thresholds
 - Ψ_{DP} is reconstructed from the processed K_{DP} field
 - final K_{DP} estimate is obtained from the reconstructed Ψ_{DP} field through using finite differencing once more

Institute of

Space Sciences

Antía Paz Carracedo 2nd PAZ workshop

EXCELENCIA MARÍA

DE MAEZTU

Kdp calculation

Space Sciences

Institute of

- Calculation of K_{DP} based on the method developed by Vulpiani (<u>Vulpiani et al.</u> 2012, <u>Vulpiani et al. 2015</u>)
- Input parameters
 - Number of iterations
 - Window size
 - Filtration of Ψ_{DP}
 - Censor it where ${oldsymbol
 ho}_{HV}$ is lower than 0.65
 - Unravel angles when strong discontinuities are detected
 - Remove very short sequences of valid data
 - Apply a median filter on every profile

Antía Paz Carracedo 2nd PAZ workshop

$\Delta \Phi$ calculation

Institute of Space Sciences

$\Delta \Phi$ calculation

Institute of Space Sciences Sciences

Institute of space sciences

Antía Paz Carracedo 2nd PAZ workshop

Analysis in terms of window

size

- Window size: represents the smoothing used for computing K_{DP}
- The size of the moving window and the magnitude of $\Delta \Phi$ are inversely proportional
- Most of the peaks are represented with all window sizes
- Esentially what changes is the module

Institute of

Space Sciences

Antía Paz Carracedo 2nd PAZ workshop

EXCELENCIA MARÍA

DE MAEZTU

Analysis in terms of window

size

Observations considered as precipitation cases:

- >60% of PRO's area covered by radars
- Mean $\Delta \Phi$ between 0-10km: Dphi010 > 1.5 mm

Institute of

Space Sciences

Antía Paz Carracedo 2nd PAZ workshop

EXCELENCIA MARÍA

DE MAEZTU

Vertical profiles $\Delta \Phi$

Institute of Space Sciences Sciences

- General good agreement between profiles
- NEXRAD and PAZ have similar comprehension of the observable $\Delta \Phi$
- The peaks of maximum ΔΦ exhibit remarkably close values and occur at nearly identical heights
- Better agreement for those observation with peaks at lower altitudes
- For larger $\Delta \Phi$ best fit with smaller window sizes and vice-versa.

Conclusions

Antía Paz Carracedo 2nd PAZ workshop

References

Institute of Space Sciences Space Sciences

- Cardellach, E., Oliveras, S., Rius, A., Tomás, S., Ao, C. O., Franklin, G. W., ... & Cerezo, F. (2019). Sensing heavy precipitation with GNSS polarimetric radio occultations. *Geophysical research letters*, *46*(2), 1024-1031.
- Padullés, R., Ao, C. O., Turk, F. J., de la Torre Juárez, M., Iijima, B., Wang, K. N., & Cardellach, E. (2020).
 Calibration and validation of the Polarimetric Radio Occultation and Heavy Precipitation experiment aboard the PAZ satellite. *Atmospheric Measurement Techniques*, *13*(3), 1299-1313.
- Helmus, J. J., & Collis, S. M. (2016). The Python ARM Radar Toolkit (Py-Art), a library for working with weather radar data in the Python programming language. *Journal of Open Research Software*, 4.
- Vulpiani, G., M. Montpoli, L. D. Passeri, A. G. Gioia, P. Giordano, and F. S. Marzano, 2012: On the use of dual-polarized C-band radar operational rainfall retrieval in mountainous areas. *J. Appl. Meteor. Climatol.*, 51, 405-425.
- Vulpiani, G., L. Baldini, and N. Roberto, 2015: Characterization of Mediterranean hail-bearing storms using an operational polarimetric X-band radar. *Atmos. Meas. Tech.*, 8, 4681-4698.
- Wang, Y., & Chandrasekar, V. (2009). Algorithm for estimation of the specific differential phase. *Journal of Atmospheric and Oceanic Technology*, 26(12), 2565-2578.

