

National Aeronautics and

Space Administration

Sensing Heavy Precipitation with Polarimetric Radio Occultations aboard the PAZ satellite: A new view of precipitation and water vapor

Ramon Padullés¹, F. Joe Turk¹, Chi O. Ao¹, Manuel de la Torre Juárez¹, Kuo-Nung Wang¹, Byron Iijima¹, Estel Cardellach², Sergio Tomás², Santi Oliveras², Antonio Rius²

> ¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA ² Institut de Ciències de l'Espai (ICE), IEEC, CSIC, Barcelona, Spain

Polarimetric Radio Occultations (PRO)

- New measurement technique being tested for the first time aboard the Spanish PAZ satellite.
- Launched on February 22, 2018. More than one year collecting data.
- Like standard Radio Occultations, it also provides vertical profiles of pressure, temperature and water vapor.
- Sensitivity to the whole vertical precipitating structure, including frozen particles and ice in addition to rain.
- Observable: Differential phase shift between H and V components of the received GNSS signal (ΔΦ_{H-V}).
- Asymmetric horizontally oriented falling hydrometeors induce a larger phase shift to the H component (basics of Polarimetric Weather Radar)
- First space based observing technique able to provide joint thermodynamic and precipitation information, simultaneously.
- Useful for the study of the thermodynamic processes underlying heavy precipitation, globally (ocean/land, regardless of cloud coverage).

On Orbit Calibration and Validation

- Calibration and validation using GPM constellation products (IMERG) show sensitivity to precipitation intensity
- Vertical structure of $\Delta \phi$ exhibits good agreement with precipitation climatologies
- Lower layers ($\Delta \phi_{h < 5km}$): Heavy precipitation is distributed following well known patterns
- Higher layers ($\Delta \phi_{h>10km}$): Good correlation with deep convection

All the PRO observations are linked to a precipitation measurement (R) from the IMERG product. R and $\Delta \phi$ are compared for all available observations. $\Delta \phi$ is evaluated between 0 and 10 km. The heavier the precipitation, the larger the $\Delta \phi$.

Jun - Jul - Aug $(\Delta \varphi) = 0.5 \text{ km}$ $(\Delta \varphi) = 0.$

Sensitivity of PRO Observations to Frozen Particles

- GPM and CloudSat observations are used to simulate the effect of rain and frozen particles to Δφ.
- Simulations using only rain cannot explain PAZ observations. Frozen particles need to be included.

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology Pasadena, California

www.nasa.gov

between the different height levels indicated in the

legend (different colors)

