New precipitation and cloud ice observations with
polarimetric GNSS RO aboard the PAZ satellite
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Right: sketch of a ‘standard’ GNSS Radio Occultation (RO), where a circularly
polarized antenna receives signals in occulting geometry, the receiver measures
the additional Doppler effects induced by the vertical gradients in the refractive
iIndex of the atmosphere to finally generate vertical profiles of thermodynamic
variables (T, p, qg). Left: The only modification in the GNSS PRO is the
replacement of the circular antenna by a dual-polarized one: horizontally +
vertically polarized. The hypothesis of the experiment is that
hydrometeors, especially big rain droplets associated to heavy rain, will
increase the phase delay of the horizontal propagation w.r.t. the vertical
one.
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2- THE ROHP-PAZ EXPERIMENT:

This new measurement concept is being proved aboard the satellite PAZ
Low Earth Orbiter: the Radio Occultation and Heavy Precipitation
experiment aboard PAZ (ROHP-PAZ) https://paz.ice.csic.es

Sucessful launch on February 22, 2018, by SpaceX (Falcon9) into a polar
orbit (97.4°) at ~514 km altitude, sun-synchronous dusk/dawn. GNSS RO
experiment activated on May 10, 2018.

3- FIRST POLARIMETRIC RESULTS (l): Strategy

® Published in GRL Jan’19 [https://doi.org/10.1029/2018GL080412].

® Co-located with IMERG 2D rain products + successful QC: 14,297 with
4,338 rainy cases.

® IMERG provides 2D rain rate combined from different sources, in 30
minute interval, but ~14% detection failures.

® Co-location by averaging wide areas of IMERG rain around the GNSS-PRO
central point.

IMERG co-location not perfect, invalid set of data for
one-to-one validation, but valid approach to statistically
check the response of GNSS-PRO to hydrometeors
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4- FIRST POLARIMETRIC RESULTS (ll): Sensing rain
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Vertical structures consistent with the cloud, not directly linked to the water

vapor, and with high sensitivity to frozen particles (cloud ice, mixed phase)

5- FROZEN PARTICLES?

® No cirrus cloud ice detected (layer too thin?).
® Adpol Signals above the freezing layer are analyzed in terms of its average
sighal, <A¢pol> 20km “and the maximum altitude at which Ag¢pol IS

found (Htop). \

® Strong A¢pol Signals above the
freezing layer found in convective
systems:
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Potential use of PAZ data for validation of microphysic schemes?

* [Murphy et al., 2019]: Simulations of GNSS polarimetric RO aboard an
aircraft, during an Atmospheric River event captured during the CalWater
2015 field campaign.

* Two numerical experiments were run using a mesoscale model (WRF)
configured with two different microphysical parameterizations:

* WRF Double Moment 6-class (WDM6), and
* Morrison double moment.

* The numerical experiments were used to simulate profiles of airborne
polarimetric differential phase delay observations, Ag¢pol.

* The due to hydrometeors, A¢pol differed significantly in the two experiments,
as well as the height of the maximum Ad¢pol.

* These results suggest that PRO observations have the potential to contribute

e to validating and improving the representation of microphysical processes in

numerical weather forecasts.
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[Murphy et al., 2019] doi: 10.3390/rs11192268

6- CONCLUSIONS:

PAZ carries a polarimetric RO payload, to prove the GNSS-PRO concept.
New measurement concept: thermodynamics + heavy rain.
Launched: Feb 22, 2018. RO activated on May 10, 2018.
Polarimetric phase shift linked to precipitation, larger signals for
more intense rain.
® Vertical features in polarimetric phase shift consistent with storms
at reaching different altitudes.
® Strong signals induced by frozen particles above the freezing layer.
® Use of other derived-observables (top height, signal above freezing level,
...) = potential for convection products?
® Use of PAZ A¢pol and PAZ RO moisture profiles —» Direct use of PAZ data
for better understanding of deep convection systems?
® Use of PAZ A¢pol to validate or improve micro-physics schemes in
NWP?
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